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Abstract

Data mining in time-series medical databases has been re-
ceiving considerable attention since it provides a way of
revealing useful information hidden in the database; for
example relationships between the temporal course of ex-
amination results and onset time of diseases. This pa-
per presents a new method for finding similar patterns in
temporal sequences based on multiscale matching. Multi-
scale matching enables us the cross-scale comparison of se-
quences, namely, it enable us to compare temporal patterns
by partially changing observation scales. We examined the
usefulness of the method on the chronic hepatitis dataset
and found some interesting patterns. On GPT sequences,
we found patterns that may represent the effectiveness of
interferon (IFN) treatment. On platelet count sequences,
we found that, if IFN treatment was ineffective, platelet
count kept decreasing following the progress of liver fibro-
sis, while it started increasing if the treatment was effective.

1 Introduction

Recent advances in medical devices and networking tech-
nology enable us to automatically collect huge amount
of temporal data on medical laboratory tests, for exam-
ple blood tests and urinalysis. Analysis of such tempo-
ral databases has attracted much interests because it may
provide interesting information that can be used to reveal
underlying relationships between the temporal patterns of
examination results and onset time of diseases. How-
ever, despite of its importance, large-scale analysis of time-
series medical databases has rarely been performed. This
is primarily due to the difficulty in determining appropri-
ate observation scales, i.e., selection of the length of sub-
sequences. Determination of observation scales should be
performed carefully, because it directly affects the types of
events to be captured. In many cases of practical data min-
ing, this problem is eluded by generating some sets of sub-
sequences changing their lengths, and then performing clus-
tering on each of the sets. However, this approach involves
two problems:

(1) A subsequence may not correctly represent an event. A
subsequence is usually obtained by copying a part of the
original sequence that overlaps with a given masking win-
dow. The width of the window should be determined in
advance, and it should not be changed for all part of the se-
quences. This means that no feature points of the original
sequences, i.e., inflection points and local maxima/minima,
are taken into account for determining the shape of the sub-
sequence. Therefore, one cannot guarantee that the subse-
quence correctly covers the event, namely, whether the head
and tail of the subsequence precisely match the start and end
of the event respectively.

(2) Concatenated events of different lengths may not be cor-

rectly captured. Connectivity of subsequences is not guar-
anteed when the subsequences are obtained using masking
windows that have different widths. In other words, there
is no guarantee that a set of concatenated subsequences
exactly represents a contiguous subpart of the original se-
quence. This is because no structural information of the
original sequence is taken into account in generating the
subsequences. Therefore, it is hard to obtain a cluster con-
taining the similar types of concatenated events, i.e., one-
week increase followed first by the two-week decrease and
then by the one-week increase.

In order to overcome these problems, we propose a
grouping method for temporal sequences based on multi-
scale matching [1]. It compares two temporal sequences
by partially changing observation scales. Throughout all
scales, it finds the best set of pairs of subsequences under
the restrictions that (1) the set contains no miss-matched
or over-matched subsequences, and (2) the set minimizes
the accumulated differences between the matched subse-
quences. We also introduce a dissimilarity measure for mul-
tiscale comparison of temporal sequences. The dissimilarity
measure evaluates dissimilarity of subsequences according
to the following aspects: rotation angle (amplitude), length,
phase and gradient. We demonstrate the usefulness of this
method on the chronic hepatitis datasets. The results show
that some interesting temporal patterns showing effective-
ness of interferon therapy are discovered.

2 Problems and Related Works

This section describes the problem in time-series medical
data analysis and why existing approaches are not suitable
for solving the problem.

Usually, a long time-series sequence contains some
events that have different durations. Let us consider the case
of chronic virus hepatitis as example. The hepatitis C chron-
ically inflames the liver from several years to more than 20
years. In order to evaluate progress of the disease, the tem-
poral course should be observed in long-term observation
scales. On the other hand, the anti-viral treatment with in-
terferon is usually applied to the patient during 6 month.
Therefore, the change induced by the treatment should be
observed in short-term scales. In order to capture both long-
term and short-term events, observation scales should be
changed partly in the sequence.
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Figure 1: Example sequences.

Figure 1 shows an example of this case. Sequences 1,



2 and 3 are different but they have similar global patterns
of increase(A) - decrease(B) - increase(C) when observed
in long-term scales. Sequences 1 and 3 have further sim-
ilar subpatterns in part A. Therefore, when comparing se-
quences 1 and 3, observation scales at part A should be
changed to be shorter than those in sequences 1 and 2 or
2 and 3.

A widely used approach in time-series data mining is to
cluster sequences based on the similarity of their primary
coefficients. Agrawal et al. [4] utilize discrete Fourier trans-
formation (DFT) coefficients to evaluate similarity of se-
quences. Chan et al. [5] obtain the similarity based on
the frequency components derived by the discrete wavelet
transformation (DWT). Korn et al. [6] use singular value
decomposition (SVD) to reduce complexity of sequences
and compare the sequences according to the similarity of
their eigenwaves. Another approach includes comparison
of sequences based on the similarity of forms of partial seg-
ments. Morinaka et al. [7] propose the L-index, which per-
forms piecewise comparison of linearly approximated sub-
sequences. Keogh et al. [8] propose a method called piece-
wise aggregate approximation (PAA), which performs fast
comparison of subsequences by approximating each subse-
quence with simple box waves having constant length.

These methods can compare the sequences in various
scales of view by choosing proper set of frequency com-
ponents, or by simply changing size of the window that is
used to translate a sequence into a set of simple waves or
symbols. However, they are not designed to perform cross-
scale comparison. In cross-scale comparison, connectivity
of subsequences should be preserved across all levels of dis-
crete scales. Such connectivity is not guaranteed in the ex-
isting methods because they do not trace hierarchical struc-
ture of partial segments. Therefore, subsequences obtained
on the different scales can not be directly merged into the
resultant sequences. In other words, one can not capture
similarity of sequences by partially changing scales of ob-
servation.

3 Multiscale Matching for Time-series Data

Multiscale matching, proposed by Mokhtarian [1], is orig-
inally developed as a method for comparing two planar
curves by partly changing observation scales. It divides a
contour of the object into partial contours based on the place
of inflection points. After generating partial contours at var-
ious scales for each of the two curves to be compared, it
finds the best pairs of partial contours that minimize the total
dissimilarity while preserving completeness of the concate-
nated contours. This method can preserve connectivity of
partial contours by tracing hierarchical structure of inflec-
tion points on the scale space. Since each ends of a partial
contour exactly corresponds to an inflection point and the
correspondence between inflection points at different scales
are recognized, the connectivity of the partial contours are
guaranteed.

We have extended this method so that it can be applied
to the comparison of two one-dimensional temporal se-
quences. A planar curve can be redefined as a temporal
sequence, and a partial contour can be analogously rede-
fined as a subsequence. Now let us introduce the basics
of multiscale matching for one-dimensional temporal se-
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Figure 2: Multiscale matching.

quence. First, we represent time-seriesA using multiscale
description.

Let x(t) represent an original temporal sequence ofA
wheret denotes a time of data acquisition. The sequence
at scaleσ, X(t, σ), can be represented as a convolution of
x(t) and a Gauss function with scale factorσ, g(t, σ), as
follows:

X(t, σ) = x(t) ⊗ g(t, σ)

=
∫ +∞

−∞
x(u)

1
σ
√

2π
e−(t−u)2/2σ2

du. (1)

Figure 2 shows an example of sequences in various scales.
From Figure 2 and the function above, it is obvious that the
sequence will be smoothed at higher scale and the number
of inflection points is also reduced at higher scale. Curva-
ture of the sequence can be calculated as

K(t, σ) =
X ′′

(1 + X ′2)3/2
, (2)

where X ′ and X ′′ denotes the first- and second-order
derivative ofX(t, σ), respectively. Them-th derivative of
X(t, σ), X(m)(t, σ), is derived as a convolution ofx(t) and
them-th order derivative ofg(t, σ), g(m)(t, σ), as

X(m)(t, σ) =
∂mX(t, σ)

∂tm
= x(t) ⊗ g(m)(t, σ). (3)

The next step is to find inflection points according to
change of the sign of the curvature and to construct seg-
ments. A segment is a subsequence whose ends respectively
correspond to the adjacent inflection points. LetA(k) be a
set ofN segments that represents the sequence at scaleσ(k).
A(k) can be represented as

A(k) =
{

a
(k)
i | i = 1, 2, · · · , N (k)

}
. (4)

In the same way, for another temporal sequenceB, we can
obtain a set of segmentsB(h) at scaleσ(h) as

B(h) =
{

b
(h)
j | j = 1, 2, · · · ,M (h)

}
, (5)

whereM denotes the number of segments ofB at scale
σ(h).

The main procedure of multiscale structure matching is
to find the best set of segment pairs that minimizes the total
difference. Figure 2 illustrates the process. For example,
five contiguous segments at the lowest scale of SequenceA



are integrated into one segment at the highest scale, and the
integrated segments well match to one segment in Sequence
B at the lowest scale. Thus the set of the five segments in
SequenceA and the one segment in SequenceB will be
considered as a candidate for corresponding subsequences.
While, another pair of segments will be matched at the low-
est scale. In this way, matching is performed throughout all
scales. The resultant set of segment pairs must not be re-
dundant or insufficient to represent the original sequences.
Namely, by concatenating all subsequences in the set, the
original sequence must be completely reconstructed without
any partial intervals or overlaps. The matching process can
be fasten by implementing dynamic programming scheme
[2].

The total difference between sequencesA andB is defied
as a sum of dissimilarities of all matched segment pairs as

D(A,B) =
P∑

p=1

d(a(0)
p , b(0)

p ), (6)

whereP denotes the number of matched segment pairs. The
notationd(a(k)

i , b
(h)
j ) denotes dissimilarity of segment pairs

a
(k)
i andb

(h)
j at scalesk andh defined below.

d(a(k)
i , b

(h)
j ) = max(θ, l, φ, g), (7)

whereθ, l, φ andg respectively denote segment difference
on rotation angle, length, phase and gradient defined below.

θ(a(k)
i , b

(h)
j ) =

| θ
(k)
ai − θ

(h)
bj

|
θ
(k)
ai + θ

(h)
bj

(8)

l(a(k)
i , b

(h)
j ) =

∣∣∣∣∣∣
l
(k)
ai

L
(k)
A

−
l
(h)
bj

L
(h)
B

∣∣∣∣∣∣ , (9)

φ(a(k)
i , b

(h)
j ) =

∣∣∣∣∣∣
φ

(k)
ai

Φ(k)
A

−
φ

(h)
bj

Φ(h)
B

∣∣∣∣∣∣ , (10)

g(a(k)
i , b

(h)
j ) =




1, if g
(k)
ai × g

(h)
bj

< 0∣∣∣g(k)
ai − g

(h)
bj

∣∣∣ , otherwise.

(11)
whereθ

(k)
ai andθ

(h)
bj

denote rotation angles of tangent vec-

tors along the contours,l(k)
ai and l

(h)
bj

denote length of the

contours,L(k)
A andL

(h)
B denote total segment length of the

sequencesA andB at scalesσ(k) andσ(h), φ
(k)
ai denotes

temporal delay from the first time of data acquisition,Φ(k)
A

denotes durations of data acquisition of sequenceA, g
(k)
ai

denotes difference of data values at both ends of segment
a
(k)
i , andσ denotes standard deviation of the data values.
The first two termsθ andl defined in Equations (8) and

(9) characterize shapes of the subsequences. Large differ-
ences can be assigned when difference of rotation angle
(amplitude) or relative length is large. The third termφ
defined in Equation (10) emphasizes difference on phase.
Phaseφ(k)

ai is defined as an acquisition timet of the head

point of segmenta(k)
i . It will be normalized by the acquisi-

tion durationsΦ(k)
A before taking subtraction toφ(h)

bj
/Φ(h)

B .
The last termg defined in Equation (11) emphasizes differ-
ence on gradient normalized by the standard deviation of the
corresponding attribute value. Figure 3 illustrates meaning
of these terms.
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Figure 3: Components of the dissimilarity measure.

By this measure, we simultaneously evaluate dissimilar-
ity of two events from the following aspects: (1) intenseness
of increase/decrease of data values, (2) length of the events
(3) dates of the events (4) global trends of the events. Be-
sides, by taking maximum of these four factors, we improve
discrepancy between sequences.

4 Experimental Results

We examined usefulness of this method on the chronic hep-
atitis dataset [9], which was used as a common dataset
at ECML/PKDD Discovery Challenge 2002. The dataset
contained long time-series data on laboratory examinations,
which were collected at Chiba University Hospital in Japan.
The subjects were 771 patients of hepatitis B and C who
took examinations between 1982 and 2001. Each sequence
originally had different sampling intervals from one day to
one year. From preliminary analysis we found that the most
frequently appeared interval was one week; this means that
most of the patients took examinations on a fixed day of
a week. According to this observation, we determined re-
sampling interval to seven days.

First, we applied the proposed method to the GPT se-
quences. Here we removed 268 of 771 sequences because
biopsy information was not provided for them and thus their
virus types were not clearly specified. We performed mul-
tiscale matching for every pair of sequences and then per-
formed rough clustering [3] of the sequences using the de-
rived dissimilarities. The resultant clusters were stratified
according to the virus type and administration of the inter-
feron (IFN) treatment. For clusters that had interesting com-
positions, we visually inspected common patterns in those
clusters.

Clusters well reflected effectiveness of the interferon
treatment. Table 4 shows a part of the clustering result.
Two types of interesting patterns were found in the clus-
tered sequences. The first pattern was found in cluster 4,
which contained remarkably many cases of type C with
IFN (B/C/C(IFN) = 6/3/25). In this cluster, GPT decreased
after administration of IFN and then kept flattened at low
level (figure 4). This pattern represented cases where inter-
feron successfully suppressed activity of the type C hepati-
tis virus. The second pattern was found in clusters 1, 5 and
7. In these clusters, GPT had continuous vibrations (figure
5). Since this pattern was commonly observed regardless
of virus type and administration of IFN, it implied ineffec-
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Figure 4: GPT cluster 4: #19(type C; IFN), #158(type C;
IFN)

tive cases of IFN treatment. Note that figures 4 and 5 rep-
resent matching results of the sequences grouped into the
same cluster. The sequence number is shown as #xxx and
the matched subsequences are painted in the same color.

Table 1: Clusters of GPT sequences
cluster IFN=N IFN=Y total

B C C
1 24 13 42 79
2 9 7 16
3 44 25 24 93
4 6 3 25 34
5 5 4 6 15
6 1 2 3
7 42 19 31 92
...

44 1 1
total 206 100 197 503

Next, we applied the proposed method to the sequences
of platelet count (PLT) in the hepatitis data set. The dataset
contained 722 sequences but 219 of them had no informa-
tion about virus type. We excluded them and examined the
remaining 503 PLT sequences. The procedure of analysis
was the same as GPT sequences.

We found interesting clusters of PLT sequences on pa-
tients of type C hepatitis who had been applied IFN treat-
ments. These clusters contained sequences that took com-
mon chronic courses as shown in figures 6 and 7. From
sequences in figure 6 it could be seen that PLT increased
after completion of IFN treatment. This pattern might rep-
resent a typical case where ability of producing platelet had
been recovered as the liver had been cured by the IFN treat-
ment. On the contrary, sequences in figure 7 showed a pat-
tern in which PLT chronically kept decreasing even after
completion of IFN treatment. These two types of patterns
suggested that PLT increased when IFN treatment was ef-
fective, and PLT kept decreasing when IFN treatment was
ineffective and it resulted in bleeding.

For clusters that contained ineffective cases of IFN treat-
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Figure 5: GPT cluster 1: #72(type C; IFN), #892(type B)

Table 2: Relationship between stage of liver fibrosis and
platelet count

Virus Type N Stage of Fibrosis Av. PLT SD PLT
B 61 F1 206.76 51.79
B 51 F2 173.45 44.40
B 25 F3 163.84 45.91
B 22 F4 114.73 50.10
C 21 F0 232.76 63.48
C 38 F1 186.83 54.19
C 81 F2 150.85 47.58
C 67 F3 137.45 44.41
C 62 F4 123.76 45.00

ment, we further examined relationships between stage of
liver fibrosis and years until platelet count recedes from its
normal range. The results, 0-15 years for F1, 0-10 years for
F2, 0-8 years for F3 and F4, had correspondence to those of
natural courses of the chronic hepatitis to which IFN treat-
ment was not applied. These results implied that patients
who received ineffective IFN treatment and who did not
receive IFN treatment represent similar chronic courses on
platelet counts.

Based on these observations, we extended subjects to all
patients of type B and type C virus hepatitis, and exam-
ined relationships between stage of liver fibrosis and platelet
count using original data. Table 2 shows the results. For
both types, it can be seen that progress of liver fibrosis had
high correspondence to decrease of platelets.

Table 3 shows relations between activity of virus, stage
of liver fibrosis and years until platelet count recedes from
its normal range. It can be seen that platelet counts rapidly
become abnormal in the patient who had higher stage of
fibrosis. If their stages are the same, the ones who had high
virus activities receded from normal range faster.

5 Conclusions

In this paper, we have presented a new analysis method
of long time-series medical databases based on the mul-
tiscale matching. The method enabled us to compare se-
quences by partly changing observation scales. Experi-
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Figure 6: Matching result of PLT sequences that have V-
shape trends

Table 3: Relations between stage of liver fibrosis, virus ac-
tivity and time until platelet count becomes abnormal

Fibrosis Activity N Time SD Time
F1 A1 9 5.24 4.32
F1 A2 6 3.36 3.95
F2 A1 1 – –
F2 A2 16 2.87 3.25
F3 A1 1 – –
F3 A2 5 3.67 3.59
F3 A3 9 0.68 1.02
F4 A1 1 – –
F4 A2 15 0.88 2.27
F4 A3 9 0.08 0.17

ments on the chronic hepatitis data showed the usefulness of
this method. For GPT sequences, we found interesting pat-
terns that may represent effectiveness of IFN treatment. For
PLT sequences, we found that, if IFN treatment was ineffec-
tive, platelet count kept decreasing following the progress of
liver fibrosis, while it started increasing if the treatment was
effective. These results suggested the possibility of using
blood tests for predicting stage of liver fibrosis and effec-
tiveness of IFN treatment as an alternative of invasive liver
biopsy. In the future we would like to clinically validate
these hypotheses.
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